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Abstract. The influence of global inhibition on travelling pulses both in infinite and in finite periodic sys-
tems is investigated. Analytic investigation of the modified piecewise linear Rinzel–Keller–Model (RKM)
shows a shrinking and slowing down of pulses due to global inhibition. Analytic results obtained are con-
firmed by numerical simulations. The investigation is completed by numerical simulations of the modified
Oregonator model for the light–sensitive BZR.

PACS. 52.35.Mw Nonlinear waves and nonlinear wave propagation (including parametric effects, mode
coupling, ponderomotive effects, etc.)

1 Introduction

Reaction-Diffusion-Systems (RDS) have been used exten-
sively to study structure formation in various physical sys-
tems. Excitable media are of most interest for the mod-
elling of chemical nonlinear reactions, of the evolution of
bacterial colonies and also of the behaviour of nonlinear
semiconductors and gas-discharge processes [1–5]. They
are described by a set of two reaction–diffusion equa-
tions with two effective components u(x, t)– the activator,
v(x, t)– the inhibitor

τu
∂

∂t
u = f(u, v) + Lu

2∇2u (1)

τv
∂

∂t
v = g(u, v) + Lv

2∇2v. (2)

The usual shape of the nonlinear production and de-
cay terms in these balance equations are an S-shaped
activator- and a linear inhibitor–dynamics with one sta-
ble fixed point and a second long living branch that is
responsible for the excited regime of the system [6–9].
The dynamics and hence the resulting structures in the
medium are determined by the relation of the diffusion
lengths Lu, Lv and relaxation times τu, τv. For Lv � Lu
and τu � τv, pulses travel with constant width L0 and
velocity c0 through the medium if special boundary and
initial conditions are applied.

The introduction of nonlocal couplings into these mod-
els is an important extension [10–13]. In this case the
nonlinear production and decay in f(u, v) and g(u, v) do
not only depend on the local value of the densities, but
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also on averages over a larger part or the entire system.
In systems with one species, for instance, only nonlocal
couplings were introduced to describe the ballast resistor
[14,15]. Turing instabilities were also shown to be the re-
sult of a long–ranging nonlocal coupling [16].

Nonlocal couplings become global ones if their char-
acteristic length is larger than the system size or the size
of single structures. Their strength does not depend on
the position anymore. The existence of such couplings is
a very common feature of many physical systems. In cat-
alytic surface reactions they occur in a natural way [17,18]
because the adsorption processes depend on the local par-
tial pressure which adjusts to the reaction on the surface.
Global couplings are always present in nonlinear semicon-
ductor devices where the overall current feeds back to the
voltage applied [19,20]. They have been extensively in-
vestigated in electrochemical reactions [21]. In this paper
we introduce a new way to control the light dependent
Belousov–Zhabotinsky Reaction (BZR) globally. This re-
action can be amplified or inhibited by controlling the
intensity of light by the actual pattern formed in the re-
actor [22].

In the mathematical description a new time depen-
dent parameter enters which must be determined self-
consistently from the occurring structure. In the steady
state it is a constant which shifts the characteristic param-
eters [23]. That is why these solutions belong to the same
class of solutions as those without global coupling. How-
ever, global inhibition will change bifurcation points and,
hence the conditions for the occurrence of the structure
[13,24–28]. It yields complex interactions between several
elementary structures [12,17,25,29,30].
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In this paper we explore the influence of global inhi-
bition on the most common structure in one dimensional
excitable media which is the travelling pulse. A pulse ex-
hibits an excitation of the media travelling with constant
velocity. In excitable media with Lv = 0 both a stable and
an unstable pulse are known to exist [6,31]. The influence
of nonlocal coupling on the dynamics of pulses has already
been discussed in [26]. Krischer and Mikhailov [25] have
investigated the effect of global inhibition on the bifurca-
tion from a standing to a travelling pulse.

We are interested in the dependence of the width L
and the velocity c of a pulse on the coupling strength µ.
We derive analytic relations for the shape and the veloc-
ity generalizing the solutions of Ito and Ohta [32] for the
piecewise linear Rinzel–Keller model. The investigation is
completed by numerical simulations of the modified Oreg-
onator which describes the light-dependent BZR.

The special shape of the coupling differs in the two
models. In the piecewise-linear model the threshold a is
increased with the total sum of activator and inhibitor.
We show in the next section that this situation can also
be obtained from other kinds of couplings. In the Orego-
nator the incident light φ will be controlled by the total
amount of activator. Despite the differences in both mod-
els the global coupling suppresses the excitability of the
medium proportional to the amount of excited area in the
medium. Therefore, it is not surprising that the results of
both models coincide qualitatively and that our analyti-
cal approach can help to understand the findings for the
Oregonator.

2 Analytical investigation of the globally
inhibited RKM

2.1 The system

To study the influence of global inhibition on the veloc-
ity c and on the width L of a travelling pulse we consid-
ered a model with piecewise linear activator–inhibitor dy-
namics. Such models were first introduced by Rinzel and
Keller [33] in 1973 and are analytically easily to treat
[8,34,35,32].

∂

∂t
u = −u− v +H(u− a) +∇2u (3)

ε−1 ∂

∂t
v = γu− v. (4)

Here the small factor ε is the ratio between the charac-
teristic times of activator and inhibitor τu/τv, H(u − a)
is the Heavyside–function which is one if the activator ex-
ceeds the threshold value a. By the choice of the thresh-
old 1/(1 + γ) < a < acrit < 1/2 we achieve excitabil-
ity. The lower limit is characterized by the transition into
the bistable regime and the upper limit a = 1/2 is the
Maxwell point for the potential in equation (3) with v = 0.
Moreover, we set Lv = 0 and Lu = 1. This model is
known to exhibit a solitary travelling pulse for an over-
critical initial condition, periodic boundary conditions –

u(0, t) = u(LSyst, t), v(0, t) = v(LSyst, t) or densities at
infinity in the stable fixed point if LSyst →∞ [6,9].

The pulse is often discussed in terms of a front and a
back interface within which v varies only slightly. In this
approach the value of v within the interface determines its
velocity. For the stationary pulse the value of v in the back
interface will adjust such that its velocity becomes that of
the front interface. If the distance of the interfaces is small
an interaction has to be taken into account. Near the crit-
ical threshold acrit the back interface acts on the front
interface and the pulse will slow down. For overcritical
a > acrit the front interface stops whereas the back in-
terface keeps on running until both interfaces collide and
the pulse extincts. If ε is very small the back interface fol-
lows lately. Now the interaction between the interfaces is
small and acrit approaches 1/2 where no positive interface
velocity is possible anymore.

We introduced the global inhibition similar as in [25]

a = a0 + µ

∫
dx′ (u(x′, t) + v(x′, t)) , (5)

which results in a shift of the excitation value without
changing the fixpoint value. µ stands for the coupling
strength. The integral is taken over the whole system with
length LSyst. Both values are our new control parameters.

Another generic possibility to introduce global cou-
pling in the activator dynamics is to modify equation (3)
in the following way

∂

∂t
u =− u− v +H(u− a0)

− µ

∫
dx′ (u(x′, t) + v(x′, t)) +∇2u . (6)

Here the global inhibition enters in an additive way and
the threshold value a0 is fixed. In this model the fix-
point (uf , vf) varies in dependence on the global amount
of substrates on the system. This situation is more com-
mon in many experimental systems. As shown in Ap-
pendix A both kinds of inhibition are equivalent for
stationary pulses. Equation (6) also yields a shift of an
effective excitation threshold ã due to an effective cou-
pling µeff ∝

µ
1+µLSyst

. Note that µeff depends upon the

system size and vanishes for large systems LSyst →∞.
In the analytic consideration we restrict ourselves to

equations (3–5).

2.2 Stationary solutions

We are looking for travelling solutions of these equa-
tions (3–5) with a stationary shape, i.e., u(x, t) = u(z)
and v(x, t) = v(z) where z = x− ct. We define the length
L of a pulse as the size of the area where u(x) > a, i.e.,
L =

∫
dxH(u(x) − a). It is identical to the distance of

the points where ∂2

∂x2u(x) changes its sign. Therefore, this
definition seems to be a natural one.

This approach yields a system of ordinary differential
equations. In Appendix B we explore the pulse solution of
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equations (3, 4) given in [32]. The new point in our inves-
tigation is that the excitation value a becomes a function
of the shape of the travelling pulse.

As in [24] we use a self–consistent approach. For a sta-
tionary pulse the threshold a will be constant. We look for
a family of solutions u(x), v(x) of equations (3, 4) depend-
ing parametrically on a. Hence, the velocity and the width
are functions of a. The knowledge of these functions gives
the key to solve the full problem where a itself depends on
integrals over the solution u(x), v(x) due to equation (5).
In this equation a should be determined self–consistently.
If the integral in equation (5) could be evaluated straight-
forward we would obtain a single equation for a. We will
see that in our case equations (3, 4) yield a closed set of
two equations for c and L. They remain closed if we take
equation (5) into account. These equations must be solved
for special values of µ, ε, γ and a0. Since we are not in-
terested in a solution for special parameters we determine
the inverse relation, i.e., a0 as a function of a. This is more
convenient since equation (5) can immediately be solved
for a0. The relation obtained reveals the qualitative be-
haviour of the family of solutions for different parameters.

It remains to calculate the expression of the integral
in equation (5). From equation (3) we find for a travelling
pulse ∫

dx′ (u(x′) + v(x′)) =

∫
dx′H(u− a) = L. (7)

We obtain an increase of the excitation value a with the
width of the pulse L.

Using equation (4) we are able to calculate the contri-
bution of the activator and inhibitor separately∫

dx′u(x′) =
1

γ

∫
dx′v(x′). (8)

It becomes clear that every kind of global inhibition that
is linear in u and v scales with the width L of the pulse
and will, therefore, behave similarly to our model.

2.3 Single pulse for LSyst →∞

Let us first consider a single solitary pulse (Fig. 1) in an
infinite extended media of equations (3–5) with densities
at the boundaries (u, v) |z→±∞ = (uf , vf) = (0, 0). It re-
quires the solution of several merging conditions and

u(0) = u(L) = a. (9)

We use the solution of Ito and Ohta parametrically de-
pendent on a given in Appendix B. Taking into account
the global inhibition it leads to the following set of tran-
scendental equations:

h(λ1)

λ1P ′(λ1)

(
1− eλ1L

)
= a0 + µL, (10)

3∑
i=2

h(λi)

λiP ′(λi)

(
1− e−λiL

)
= a0 + µL . (11)

0 L

IIIIII

z

u
,v

Fig. 1. Shape of a pulse. The solid line corresponds to the ac-
tivator concentration u(z) and the dashed line to the inhibitor
concentration v(z). There are three sections – the front section
III, the excited section II and the back section I.

As shown in Appendix B the eigenvalues λi and also func-
tions P, h and k are parametrically dependent on c. There-
fore equations (10, 11) completely determine the aimed
velocity c and L.

To obtain analytical expressions we assume ε� 1 and
c ∝ ε1/2. In this case the length L of the pulse is compara-
ble to the diffusion length of the activator L ∝ O(1), i.e.
the width of the interfaces and the entire pulse are of the
same order. Equations (10, 11) give in O(ε1/2)

c2 = εγ

(
−3 +

2
1
L −

1
eL−1

)
(12)

a0 + µL =
1− e−L

2
−
εγL

2c
· (13)

The strength of global inhibition contributes only in equa-
tion (13) with the magnitude of orderO(1). This new term
changes the behaviour of the stable branch of the solu-
tion where dL/da0 < 0. In the case µ = 0 only the term
εγL/(2c) gives rise to a stable branch, and a0 lies in the
vicinity of the Maxwell point 1/2 [35]. For a0 considerable
smaller than 1/2 our ansatz c ∝ ε1/2 fails. In contrast, if
µ = O(1) the given approximation yields an upper branch
for arbitrary a0 below the critical one. Now the term due
to global interaction in equation (13) dominates the ad-
justment of the width of the pulse. We can neglect the
term proportional to ε in equation (13) and this equa-
tion will determine L. In this equation γ no longer ap-
pears. However, it cannot be chosen arbitrarily since only
in excitable media where γ > 1/a − 1 travelling pulses
exist.

Equation (12) gives a monotonous relation between c
and L. This relation is depicted in Figure 2. Larger pulses
possess higher velocities. This curve does not distinguish
between stable and unstable solutions. We underline that
the relation does not depend on µ. However, the stability
of the pulse will depend strictly on µ.

The graph L(µ) is shown in Figure 3. It was obtained
by plotting the inverse function µ(L) from equation (13).
For a fixed µ below some critical value a stable large and
an unstable small inhomogeneous solution exist. We also
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Fig. 2. Dependence of velocity c on the size of the pulse L,
solid line in an infinite system, dashed line LSyst = 33.3, dotted
line LSyst = 20.0.

show the dependence of c on µ (Fig. 3). Both values in the
stable branch are monotonously decreasing as µ increases.
The amplitude umax of the pulse up to O(ε1/2) given by

umax = 1− e−L/2 −
εγL

2c
(14)

decreases for increasing µ (Fig. 3).
In the limit µ�

√
εγ O(1) the saddle–node bifurcation

of the two inhomogeneous solutions can be estimated ana-
lytically. At the bifurcation point the width L approaches
the value

L(SNB) = − log 2µ, (15)

which inserted in equation (13) gives the bifurcation
threshold

a
(SNB)
0 =

1

2
− µ− µ log 2µ. (16)

This dependence is depicted in Figure 4. Above a
(SNB)
0

no inhomogeneous solitary pulse solution exists. In Fig-
ure 3 the dotted lines show the bifurcation values. These
values are in good agreement with the turning points of
the curves obtained for small ε. We underline that the bi-
furcation values of c, L and umax decrease with increasing
coupling strength µ. Hence, smaller stable pulses can be
realized by increasing global inhibition.

2.4 Pulses on a ring

Now we discuss travelling pulses on a ring. Since periodic
boundary conditions are applied equations (10, 11) modify
to

3∑
i=1

h(λi)
(
1− eλiL

)
λiP ′(λi) (1− eλiLSyst)

= a0 + µL, (17)

3∑
i=1

h(λi)
(
1− e−λiL

)
λiP ′(λi) (1− e−λiLSyst)

= a0 + µL, (18)
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Fig. 3. Dependence of the order parameter on µ for a0 =
0.2, 0.3, 0.4 for the piecewise linear model where LSyst → ∞
(width L (a), velocity c (b) and amplitude umax (c)). Dotted
lines represent values at the saddle-node-bifurcation. All values
are exact up to O(ε1/2).

where the system size LSyst enters. The polynomials P, h
and the eigenvalues are the same as in equations (10, 11).
Equations (10, 11) are obtained for LSyst →∞.

Equations (17, 18) yield up to O(1)

a0 + µL =
sinh

(
L
2

)
cosh

(
LSyst−L

2

)
sinh

(
LSyst

2

) −
Lγ

LSyst(1 + γ)
· (19)

We find another term Lγ
LSyst(1+γ) due to finite size which

leads to a shrinking of pulses. It acts similarly to global
inhibition. In fact, it is the main difference to equation
(13). The reason for the existence of this term can be
explained easily. The pulse permanently travels through
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Fig. 4. Bifurcation-line for LSyst →∞ – solid line and LSyst =
20, 33, 50 – dashed lines. Pulses exist below the lines in region
I. In region II no pulses solution exist. The larger LSyst the
larger region I.
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Fig. 5. Width L (a) and velocity c (b) of a pulse in dependence
on the system size – solid infinite system, dashed line LSyst =
80, LSyst = 33.3, LSyst = 20.

the medium producing inhibitor. The decay time of the
inhibitor is large in comparison to the time of a walk
of the pulse around the ring. Therefore a homogeneous
stationary background of the inhibitor is always present
in the system leading to an effective shift of the thresh-
old. Other modifications between equations (13, 19) are of
importance if LSyst becomes rather small. The width of a
pulse in a finite periodic system is shown in Figure 5a.

Further expansion of equations (17, 18) up to O(ε1/2)
yields a relation between velocity and width of the pulse
given in Appendix B. It is depicted in Figure 2. The pulses
become slower and smaller as the system size LSyst de-

T
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/
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1

Fig. 6. Dependence of the velocity of a pulse in a ring on the
period T for µ = 0 – solid line, µ = 0.02 – dashed line and
µ = 0.04 – dotted line.

creases (Fig. 5). This is the typical behaviour for wave
trains in dependence on the wavelength. We reestablish
this fact here for globally inhibited finite systems. The de-
pendence on the period T is also similar to that of wave
trains (Fig. 6). The minimal period Tmin increases in a
globally inhibited system.

The position of the saddle–node bifurcation is given by

a
(SNB)
0 =− µL(SNB)

+
sinh

(
L(SNB)

2

)
cosh

(
LSyst−L

(SNB)

2

)
sinh

(
LSyst

2

)
−

L(SNB)γ

LSyst(1 + γ)
(20)

with the width L at the bifurcation point

L(SNB) =
LSyst

2

− arccosh

{
2 sinh

(
LSyst

2

)(
µ+

γ

LSyst(1 + γ)

)}
. (21)

It is depicted in Figure 4. The parameter region where
stable pulses can be observed shrinks as the system size
LSyst decreases.

It is obvious how to construct more complicated solu-
tions which consist of several pulses using the described
solution subject to periodic boundary conditions. In this
case a solution of two pulses on a ring is constructed out of
the single pulse solution in the system with size LSyst/2.
The solutions obtained in this way are parts of a wave
train. A bifurcation diagram of these solutions is depicted
in Figure 7.

2.5 Numerical investigation

We carried out simulations of the RKM for LSyst = 20
using an explicit Euler–method on a lattice of 1000 grid-
points with periodic boundaries. For reasons of numerical
convenience we chose a tanh–function with a certain width



404 The European Physical Journal B

µ

L

0.10.050

6

4

2

Fig. 7. Size of one, two, three and four pulses for LSyst = 80
(right to left). Parameters: a0 = 0.2, γ = 10, ε → 0. Numeri-
cally (ε = 5× 10−4) we found stable pulses at (�). At (2) two
pulses are unstable, one decays and the other survives jumping
to the branch of a single pulse.
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Fig. 8. Numerically obtained size (a) and velocity (b) of pulses
in the RKM for LSyst = 20, γ = 10, ε = 5×10−4 (3), solid line
– value obtained by analytical calculation for ε→ 0. Since we
use a finite ε in our simulations deviations from the analytic
results occur.

instead of H(x) as nonlinearity. In order to investigate the
stability of the solution, we added small noise in the simu-
lation. The results of these simulations are in good agree-
ment with those obtained analytically for ε → 0. Small
deviations from the exact analytic expressions are due to
the modification of the nonlinearity in our system, and
the finite ε we had to introduce. Moreover, they prove the
stability of the large pulses, i.e., the upper branch in Fig-
ure 8. Single pulses on the lower branch in Figure 8 are
unstable in our simulation.

Additionally, we investigated the behaviour of two
pulses on a ring. This solution is composed of two sin-
gle pulses on rings of half the system size and half value
of global coupling. The simulation reveal that two pulses
are not stable at the entire upper branch. We found sta-
ble two pulses for rings larger than LSyst = 80 (Fig. 7)
and µ smaller than a critical one. For large µ it hap-
pened that one pulse was growing and the other shrinking.
This instability of two pulses is due to their interaction
both via global inhibition and the action of the inhibitor
v. A perturbation which enlarges one pulse will increase
the threshold a. Furthermore the pulse produces more in-
hibitor v locally which affects the pulse coming next, i.e,
the smaller one. Obviously, both kinds of interaction make
the motion of the second pulse more unfavourable and,
thus, the second pulse shrinks. Therefore, two pulses are
only stable for large rings and for small global coupling µ.

3 Influence of light-induced global feedback
in the Oregonator-model

Now we start to investigate the effect of a global cou-
pling on a well suited experimental system for the study
of travelling waves [36–39]. We consider the light sensitive
Belousov-Zhabotinskii reaction with rutheniumbipyridyl
as a catalyst. Global feedback–effects were realized in this
system [40]. Another global coupling can be introduced by
measuring the transmitted light intensity through a Petri
dish and feeding it back to the incident light. The theoret-
ical modelling of this situation will be the subject of this
section.

The modified Oregonator model can be regarded as a
first approximation to describe the dynamics of this reac-
tion on a qualitative level and reads

∂

∂t
u =

1

ε

[
u(1− u)− (γv + φ)

u− q

u+ q

]
+Du∇

2u (22)

∂

∂t
v = u− v +Dv∇

2v. (23)

Here u and v again play the role of activator and inhibitor,
respectively. u denotes the local concentration of HBrO2

and v the oxidized form of the catalyst scaled by the rate
constants of the five reaction steps the Oregonator takes
into account and by the recipe to bring the parameters
into dimensionless quantities [31]. The relation of the time
scales ε as well as q are determined by rate constants and
the chemical concentrations. γ is a stoichiometric parame-
ter that appears in that reaction of the Oregonator scheme
which describes the release of bromide ions by the oxida-
tion of bromalonic and malonic acid. Du and Dv are the
diffusion coefficients of the two species. φ is the photo-
chemically produced bromide flow which describes the in-
fluence of the incident light. Both γ and φ determine the
excitation threshold of the system.

Our global feedback will be realized by variation of
the incident light. The spatial average of the emerging pat-
tern determines the forthcoming evolution via the incident
light [22]. This light-induced global feedback is introduced
into the system via a third equation. It describes the tem-
poral changes in the photochemically produced bromide
flow

φ = φ0 + µ

∫
u(x′, t) dx′. (24)

This dynamics, therefore, gives the global feedback by the
integral over the activator which now not necessarily scales
with the width of the pulse.

Nevertheless, the type of this global coupling is similar
to the situation considered in previous sections. The vari-
ation of the incident light leads to a shift of the activator
nullcline u̇ = 0. However, this nullcline is very steep in the
vicinity of the fixpoint. So the activator concentration in
the fixpoint changes only slightly and therefore the contri-
bution of the fixpoint to the integral becomes negligible.
In fact, inclusion of the global feedback results in a shift
of the excitation value proportional to the total amount



H. Hempel et al.: Travelling pulses in reaction–diffusion systems under global constraints 405

of activator. Hence, it is not surprising that we will obtain
similar results as in the previous section.

In order to study the influence of the strength of the
global feedback on the dynamics of solitary pulses numer-
ical simulations of equations (22–24) are carried out in the
excitable regime. These simulations are performed using a
finite-difference scheme with up to 8000 equidistant grid-
points and periodic boundary conditions. The set of the
ODEs is solved using an explicit Euler-method. A solitary
pulse is used as initial distribution. For the simulations
presented in this paper the values of q, ε, γ ,φ0 , Du and
Dv are fixed at q = 0.002, ε = 0.01, Du = 1.0, Dv = 0.6,
γ = 3.0, φ0 = 0.01.

A set of simulations shows that the pulse profile, the
pulse amplitude and the propagation speed can be con-
trolled by the global feedback (Fig. 9). Increasing the
strength of the global interaction µ leads to a decay of the
propagation speed and the width of the pulse. At the same
time the amplitude of the pulse decreases. However, the
propagation speed cannot drop to zero. In fact, the pulse
will disappear with finite width, amplitude and velocity
when a critical value of the coupling strength is reached.
This behaviour is in good agreement with the analytical
results obtained in the previous section (see Fig. 3). The
relation between size and velocity of a pulse obtained nu-
merically is shown in Figure 10. The data do not reveal
any dependence on the system size. Basically, there is the
same dependence as that found for the RKM (Fig. 2). It
becomes detectable if L/LSyst becomes larger. However,
simulations in this regime of pulse widths are very time
consuming since they require the choice of a very small
ratio of time scales ε.

Furthermore, we investigated the stability of two
pulses. Here again an instability was found in regions
where the corresponding single pulse solution is stable.
For large systems Ls > 200 two pulses can coexist. They
become unstable for a critical µ about 9.

4 Conclusion

We considered theoretic models where a global coupling
feeds back via a inhibitory shift of the excitation thresh-
old. This situation seems to be a general one since an
additive kind of global inhibition can be transformed into
our model. Global inhibition results in the shrinking of
pulses of excitation over several orders of magnitude. The
velocity of the pulses decreases strongly if global inhibition
is switched on.

We have studied the propagation of a globally inhib-
ited solitary pulse in an infinite medium and in ring–like
devices. We have shown that finite system lengths lower
the width and the velocity of a pulse. The parameter re-
gion for stable pulses shrinks with the system size. These
two phenomena are well known for media without global
inhibition. In this work we have investigated them quan-
titatively. We have found exact analytic expressions for
both the shape and the velocity of the pulse. It was proven
numerically that the upper branch of the single pulse so-
lution is stable and the lower branch is unstable. Global
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Fig. 9. Width (a), velocity (b) and amplitude (c) of a solitary
pulse versus the coupling strength at fixed parameters γ and
φ0. The width of the pulse was determined at u = umax/2, (3)
for LSyst = 200, (+) for LSyst = 80, (2) for LSyst = 30.

coupling stabilizes smaller pulses. We emphasize that our
results obtained in finite systems using periodic boundary
conditions can also be applied to wave trains. Numerical
simulations of two pulses revealed that they are not stable
on the entire upper branch but stable above some critical
width.

If the ratio of the time scales of activator and inhibitor
is arbitrary small the shape of the pulse in an infinite sys-
tem is governed by the strength of global inhibition µ and
not by the coupling of the local inhibitor γ. However, γ > 0
is required in order to realize an active media. Therefore,
the pulse is not sensitive to a small adiabatic fluctuation
of the properties of the dynamics of the inhibitor v as long
as an excitable media is realized.
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Fig. 10. Numerically obtained relation between size and ve-
locity of a pulse when varying the incident light φ, (3) for
LSyst = 200, (+) for LSyst = 30.

Inclusion of global inhibition in the light sensitive
BZR, which was realized via a control of the incident light,
also gives rise to a shift of the excitation value. There-
fore, numerical results for the Oregonator are in qualita-
tive agreement with those for the RKM. The dependence
on the system size found in the two models behaves simi-
larly.

Global inhibition provides a mechanism for control-
ling and manipulating spatio–temporal behaviour of ac-
tive media. It is a possible way to control the velocity of
a pulse experimentally. Furthermore, one can restrain a
pulse by applying strong global inhibition and let it go at
will switching off global inhibition.

Since only one pulse is stable for overcritical global
couplings wave train solutions can be suppressed. Hence,
the behaviour of a global inhibited pulse generator will
change too. It remains still a challenge to investigate this
in greater detail. It seems feasible to build a pulse genera-
tor which takes the values of global coupling as input data
and generates nonperiodic wave trains in a definite way.
One can imagine that it can be used to prepare special
initial conditions or even to generate messages.

We highly appreciate financial support from DFG–grant
SCHI–354.

Appendix A: Additive global inhibition

We investigate the relation between the systems on the
one hand equations (3–5) and on the other hand equations
(4, 6). Applying a linear transformation in the system
equations (4, 6) with additive inhibition

ũ = u− uf = u+
µ

1 + γ

∫
dx′ (u(x′, t) + v(x′, t)) (25)

ṽ = v − vf = v +
γµ

1 + γ

∫
dx′ (u(x′, t) + v(x′, t)) (26)

and a varying threshold value

ã = a0

+
µ

(1 + γ)(1 + µLSyst)

∫
dx′ (ũ(x′, t) + ṽ(x′, t)) (27)

we find that the inhibitor dynamics equation (4) does not
change and the activator dynamics equation (6) reads

∂

∂t
ũ = −ũ− ṽ +H(ũ− ã) +∇2ũ

−
µ

1 + µLSyst

d

dt

∫
dx′ (ũ(x′, t) + ṽ(x′, t)) . (28)

We obtained a dynamics like in equations (3–5) with glob-
ally inhibited excitation value ã due to equation (27). An
additional term describes the change of the total amount
of substrates. However, for the travelling pulses this term
vanishes. Moreover, the fixpoint (uf , vf) given by the inte-
grals in equations (25, 26) becomes stationary. Therefore,
both generic cases can be mapped one onto the other for
travelling pulses.

However, in contrast to the first kind of global cou-
pling the strength of the coupling depends on the system
size LSyst. An effective coupling µeff ∝

µ
1+µLSyst

occurs in

equation (27) which saturates for large µ. For large sys-
tems LSyst →∞ the coupling µeff tends to zero. For single
solitary pulses we assume (Eq. (7))∫

dx′ (ũ(x′, t) + ṽ(x′, t)) = Ĩ = const� LSyst.

Therefore, there is no change of the threshold value ã = a0

in equation (27) for infinite systems. The fixpoint value in
this situation tends to the original value (uf = 0, vf = 0).
This becomes clear from the calculation of the integral

I =

∫
dx′ (u(x′, t) + v(x′, t))

= LSyst(uf + vf) +

∫
dx′ (ũ(x′, t) + ṽ(x′, t)) = I0 + Ĩ .

Using the expressions for the fixpoint equations (25, 26)
we find vanishing solutions uf , vf for LSyst → ∞. There-
fore, for LSyst →∞ there are no effects in infinite systems
with additive inhibition of the type of equations (3, 4, 6).
Only for LSyst < 1/µ strong effects result from the addi-
tive inhibition. The problems of equations (3, 4, 6) can be
mapped to problems with shifting excitation threshold.

Appendix B: Pulse-solution in the Rinzel-
Keller-model

According to [32] we obtain a solution of equations (3, 4)
in several steps. First we divide the solution into three
sections for z according to the values of u (see Fig. 1).
Within section II and III we have u(z) < a, and in section
II there is u(z) > a. Without loss of generality we set
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the boundary between section I and II to x1 = 0. The
position of the boundary between II and II has yet to
be determined. We denote it by x2 = L. Here L can be
interpreted as the length of excitation or the width of the
pulse.

We have in each section(
u(z)
v(z)

)
=

( 1
1+γ
γ

1+γ

)
H(u− a)

+
3∑
i=1

A
(section)
i

(
−h(λi)
γ

)
eλiz, (29)

where

h(λ) = (cλ− ε)/ε.

λi are the zeros of

P (λ) = (λ2 + cλ− 1(λ)h(λ) + γ = 0. (30)

Assuming that c > 0 this yields three solutions λ1 < 0 <
λ2 < λ3.

In order to solve the full problem we have to determine

the coefficients A
(I)
i in each interval. This can be done by

applying several fit and boundary conditions. We end up
with two transcendental equations in L and c which are

u(0) = u(L) = a. (31)

They yield equations (10, 11).
In a finite periodic system we have to consider only

two sections where u(z) > a and u(z) < a, respectively.
So equation (29) still holds for two sections. Consequently,
the matching conditions become

u(0) = u(L) = u(LSyst) = a, (32)

which lead to equations (17, 18).
An expansion in orders of ε1/2 yields an expression of

the velocity

c2 = εγ
N

M
(33)

where

N = 4L(1−
L

LSyst
) sinh2

(
LSyst

2

)
+ (LSyst − L) coshL

−LSyst + L cosh(LSyst − L)

−12 sinh

(
LSyst

2

)
sinh

(
LSyst − L

2

)
sinh

(
L

2

)
M = 4 sinh

(
LSyst

2

)
sinh

(
LSyst − L

2

)
sinh

(
L

2

)
−(LSyst − L) coshL− L cosh(LSyst − L) + LSyst.
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